skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bowden, Mark_E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Carbon mineralization in humidified carbon dioxide offers a promising route to mitigate anthropogenic emissions in a world stressed by water security. Despite its technological importance, our understanding of carbonation in water-poor environments lags, as traditional dissolution-precipitation pathways struggle to explain the adsorbed water nanofilm-mediated reactivity. Here, we utilizein operandoX-ray diffraction (XRD) and advanced molecular simulations to investigate nanoconfined reactions driving forsterite carbonation, the magnesium-rich olivine. By examining magnesium ion dissolution and transport in atomistic simulations of the forsterite-water-carbon dioxide interface and comparing these with thein operandoXRD activation energies, we identify both processes as rate-limiting at saturation. Our simulations reveal a mechanistic view of interfacial carbonation, where dissolution and precipitation are mediated by anomalous quasi two-dimensional diffusion. The transport process involves intermittent diffusive hopping in the desorbed state, separated by crawling events that are spatially short but temporally long. This understanding transcends carbon mineralization, with implications for understanding the transport of contaminants in geosystems, the design of multifunctional materials, water desalination, and molecular recognition systems. 
    more » « less